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ABSTRACT 

Kronecker sets for approximation by characters are constructed by an 
application of Baire's theorem to Banach spaces of differentiable functions. 

A compact subset E of (  - oo,oo) is a Kronecker set [2, §5.2] if the exponential 
functions e~aX( - oo < 2 < oo) are uniformly dense in the continuous complex- 
valued functions of modulus 1 on E. Wik [3] has constructed Kronecker sets of 
Hausdorff dimension 1; in fact E can carry a positive measure subject to any 
prescribed continuity condition weaker than absolute continuity. However, the 
sets constructed in [3] seem to be very unevenly dispersed; we shall describe a 
function-space method that necessarily yields Kronecker sets with some degree 
of symmetry. 

Let p be a positive integer and rl ,rz,  r3,.., numbers such that 

(1) 0 < 2r~+1 < r~ < 1 (1 __< n < oo) 

(2) sup r~ = oo. 
rn+ 1 

Let [Y be the "symmetric set" of  numbers ~= l tn rn ,  e~ = "Jr 1 (1 _-< n < oo). 
For some closed interval I D_ y, C p is the Banach space of real functions, p times 
continuously differentiable in I, normed 1[ ~b [1 = max l~ l  + • + max [~b (p) I. 

TrIEOREM: Except for  a subset N of  the first category in C p, each function 
determines a homomorphism of Y onto a Kronecker set. 

Proof. We use the following fact, whose proof is left to the reader. I f  a l , . . ,  an 
are complex numbers, and 11 "",In intervals whose mutual distances are > 6, 
then for some f e  C p 

f ( x )  = ai for x ~ Ii 1 < i < n) 

llsll s (, + n6-P)max[ a,[ 

for an absolute constant B - - B ( p ) .  
A function 4~ in C v belongs to ~ N if each continuous unimodular function h 
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on Ycan be uniformly approximated by exponentials e~a~( - oo < 2 < m). Because 
the functions h admit a countable dense subset it is enough to prove that for 
eachfixed h, the exceptional set has void interior, since it is evidently of type F..  

We denote by 2(//)-1 ( / /> 0) a real number whose nearest neighbors in the 
sequence ri r2,r3,'", say r .>2( / / )  -1 > r . +  1, satisfy the inequalities 

2 p 1 (3) // r, >//;t(//)- > r.+1; 

,~,(//)-1 and r. can be made arbitrarily small by (2). 

For a number t > 0, //1 e (0, I), and a complex number z of modulus I set 

(4) V(t,Z, rh)= { -  ~o < x <  oo, le '= - z  I < / /d .  

Every real number is within 2nt -~ of  the mid-point of  an interval in V(t,z,//1) 
and each interval has length >= 2//lt -1 or > 2n. 

Divide Y into disjoint closed subsets (with mutual distances > p > 0) on each 
of  which h has oscillation <//1. Choose a number 2(//)-1 and further divide Y 
according to the co-ordinates e l , ' " ,  ~., where n depends on 2(//) by the inequality 
r. > 2(//) -1 > r.+l.  The distances between the distinct portions, say Ej (1 < j  < s), 
are at least p, or r.(1 - / /2) ,  on account of (1) and (3). More exactly, suppose 

oo r oo t ~ ,  = le, . . ,  and ~m = lemr,, agree up to ej with 1 < j < n. Then 

OO O0 ~ ~O I E--- ,gmT"m 2r j+ 1 
r a = l  m = l  j + 2  n + l  

>= 2r.(2 "-J-x  - 2 n - J - 2  . . . . .  1 - 2 / /2 )  

- -  2r.(1 - 2/12) __> rn( p - / /2 ) ,  f o r  1 > 3/ /2.  

By choosing n and // appropriately we make the distances > ½1".. The length 

I ,1 =< 2r.+,  < 2//2(//) -1. 
Choose any number zj in h(Ej) and any number wj smaller than 2n2(//) such 

that wj + ~b(Ej) contains the mid-point of  an interval of  VQ.(//), zj ~h)) (see (4)); 
the length of  the interval > 2//~2(//) -1 (for large 1(//)). Because the length 

II ll when ~ and // are properly chosen 
ff(g~) + wj ~V(2(//), zj, rh). This means that 

I expi,t(//) (~ + wj) - zjI < nx on Ej (1 =<j < s), 

and it is already true that I h -  z~l <//~ on e j  (1 <=j<=s). Now the distance 
between the Ej 's is at least ½r~; Therefore there is a function ~ in C p such that 
¢ = w j o n E ~ ( l < j < s )  and 

I1 11 -< + 2"r~-P)max[ wJ[ < B2P+*rZ*2n2(//)'-x 

=< 4n//B by (3). 

Then I exp i 2(//) (~b + ~) - h I < 2//1 and the proof  is complete. 
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REMARKS. Let L be the Lebesgue function of  Y[1, I], so that dLis  the "na tura l"  
probability carried by Y. Then L(x  + 8) < L(x)  + 2 -m(~), whenever r~(~) >= e, so 
that the modulus of  countinuity WL(e) < 8. (2-m(')/e). Now let p = 1 and observe 
that (1) and (2) can be attained with m log 2 + log r m converging to - o3 as 
slowly as we please. But this means that 2-m(~)/8 can converge to + ~ as slowly 
as we please. Thus Y can have positive h-measure for any indicator h such that 
lim,_.o h(~)/e = + oo. Now if we choose ~b' > 0, by the theorem proved, ~'(Y) 

has positive h-measure. This is Theorem 1 of I33. 
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